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Abstract. In this paper we study the reverse mathematics of
two theorems by Bonnet about partial orders. These results con-
cern the structure and cardinality of the collection of the initial
intervals. The first theorem states that a partial order has no in-
finite antichains if and only if its initial intervals are finite unions
of ideals. The second one asserts that a countable partial order
is scattered and does not contain infinite antichains if and only
if it has countably many initial intervals. We show that the left
to right directions of these theorems are equivalent to ACA0 and
ATR0, respectively. On the other hand, the opposite directions
are both provable in WKL0, but not in RCA0. We also prove the
equivalence with ACA0 of the following result of Erdös and Tarski:
a partial order with no infinite strong antichains has no arbitrarily
large finite strong antichains.
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1. Introduction

In this paper we study from the viewpoint of reverse mathematics
some theorems dealing with the structure and the cardinality of the
collection of initial intervals (also called downward closed subsets) in a
partial order. Recall that an ideal is an initial interval such that every
pair of elements is compatible (i.e. has a common upper bound) in the
interval.

The first result is a characterization of partial orders with no infinite
antichains in terms of the decomposition of initial intervals into union
of ideals. It is due to Bonnet [Bon75, Lemma 2] and can be found in
Fräıssé’s monograph [Fra00, §4.7.2]:

Theorem 1.1. A partial order has no infinite antichains if and only
if every initial interval is a finite union of ideals.

In [PS06] Theorem 1.1 is attributed to Erdös and Tarski because
its ‘hard’ (left to right) direction can be deduced quite easily from the
following result, which is part of [ET43, Theorem 1]:

Theorem 1.2. If a partial order has no infinite strong antichains then
it has no arbitrarily large finite strong antichains.

Here, by strong antichain we mean a set of pairwise incompatible
(and not only incomparable, as in antichain) elements. (Notice that
Erdös and Tarski work with what we would call filters and final inter-
vals.)

An intermediate step between Theorems 1.2 and 1.1 is the following
characterization of partial orders with no infinite strong antichains:

Theorem 1.3. A partial order has no infinite strong antichains if and
only if it is a finite union of ideals.

Our proof of Lemma 4.2 shows how to deduce the left to right direc-
tion of Theorem 1.3 from Theorem 1.2.

In [Bon75] Theorem 1.1 is a step in the proof of the following result,
which is also featured in Fräıssé’s monograph [Fra00, §6.7]:

Theorem 1.4. If an infinite partial order P is scattered (i.e. there is
no embedding of the rationals into P ) and has no infinite antichains,
then the set of initial intervals of P has the same cardinality of P .

The converse of Theorem 1.4 is in general false, but it holds when
|P | < 2ℵ0 , and in particular when P is countable:
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Theorem 1.5. A countable partial order is scattered and has no infi-
nite antichains if and only if it has countably many initial intervals.

The program of reverse mathematics ([Sim09] is the basic reference)
gauges the strength of mathematical theorems by means of the sub-
systems of second order arithmetic necessary for their proofs. This ap-
proach allows only the study of statements about countable (or count-
ably coded) objects. We therefore study the strength of Theorem 1.5
and of the restrictions of Theorems 1.1, 1.2 and 1.3 to countable partial
orders. We notice that [ET43, Bon75, Fra00] put no restriction on the
cardinality of the partial order and therefore often use set-theoretic
techniques which are not available in (subsystems of) second order
arithmetic. On the other hand we can always assume that the partial
orders are defined on a subset of the set of the natural numbers, and
this is on occasion helpful.

Since Theorems 1.1, 1.3, and 1.5 are equivalences, we study sepa-
rately the two implications, which turn out to have different axiomatic
strengths. In particular, the ‘easy’ (right to left) directions of Theo-
rems 1.1 and 1.5 are quite interesting from the viewpoint of reverse
mathematics and we are not able to settle the problem of establish-
ing their strength, leaving open the possibility that they have strength
intermediate between RCA0 and WKL0.

We assume familiarity with the ‘big five’ of reverse mathematics,
namely, in order of increasing strength, RCA0, WKL0, ACA0, ATR0, and
Π1

1-CA0.

We now state our main results and at the same time describe the
organization of the paper. In section 2 we establish our notation and
terminology and recall some basic results. In section 3 we prove a
couple of technical lemmas that are useful later on.

In Section 4 we consider Theorem 1.2 and the left to right directions
of Theorems 1.1, 1.3, and 1.5. Subsection 4.1 culminates in Theorem
4.5 where we prove, over RCA0, the equivalence of ACA0 with each of
the three statements:

• in a countable partial order with no infinite antichains every
initial interval is a finite union of ideals;
• in a countable partial order with no infinite strong antichains

there is a bound on the size of the strong antichains;
• every countable partial order with no infinite strong antichains

is a finite union of ideals.

In subsection 4.2 we show that the statement

• every countable partial order which is scattered and has no
infinite antichains has countably many initial intervals.
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is equivalent to ATR0 over ACA0 (Theorem 4.8). To obtain the reversal
we slightly modify a proof in [Clo89].

In section 5 we deal with the right to left directions of Theorems 1.1,
1.3, and 1.5, i.e. with the statements:

• if every initial interval of a countable partial order is a finite
union of ideals, then the partial order has no infinite antichains;
• if a countable partial order is a finite union of ideals then it has

no infinite strong antichains;
• if a countable partial order has countably many initial intervals,

then it has no infinite antichains;
• if a countable partial order has countably many initial intervals,

then it is scattered.

The obvious proofs of these statements go through in ACA0, but we
show that they are all provable in weaker systems. In fact RCA0 proves
the second and fourth statement (Lemma 5.1 and Theorem 5.2). On
the other hand, the first and third statement are both provable in WKL0
(Theorems 5.6 and 5.10) and fail in the ω-model of computable sets and
hence cannot be proved in RCA0 (Theorems 5.12 and 5.13). Our results
thus do not completely determine the strength of these two statements.

In Section 6 we briefly discuss the open problems left by our results
and mention some partial answers obtained by other authors after a
first draft of this paper was circulated.

2. Terminology, notation, and basic facts

All definitions in this section are made in RCA0.

2.1. Finite sequences and trees. We typically use σ and τ to denote
finite sequences of natural numbers, that is elements of N<N. Often they
belong to 2<N, i.e. they are binary, and in one occasion to 3<N, i.e. they
are ternary. Let |σ| be the length of σ and list it as 〈σ(0), . . . , σ(|σ|−1)〉.
In particular 〈〉 is the unique sequence of length 0. We write σ v
τ to mean that σ is an initial segment of τ , while σaτ denotes the
concatenation of σ and τ . By σ � k we mean the initial segment of σ of
length k and similarly, when f is a function, f � k is the finite sequence
〈f(0), . . . , f(k − 1)〉.

A tree T is a set of finite sequences such that τ ∈ T and σ v τ imply
σ ∈ T . A tree is pruned if it contains no endnodes, i.e. (∀σ ∈ T )(∃τ ∈
T )σ @ τ . A path in T is a function f such that for all n the finite
sequence f �n belongs to T . We write [T ] to denote the collection of
all paths in T : [T ] does not formally exists in second order arithmetic,
but f ∈ [T ] is a convenient shorthand.

A tree T is perfect if for all σ ∈ T there exist τ0, τ1 ∈ T such that
σ v τ0, τ1 and neither τ0 v τ1 nor τ1 v τ0 hold. A tree T has countably
many paths if there exists a sequence {fn : n ∈ N} (coded by a single
set) such that for every f ∈ [T ] we have f = fn for some n ∈ N.
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If T does not have countably many paths then we say that it has
uncountably many paths.

By [Sim09, Theorem V.5.5] ATR0 is equivalent to the perfect tree
theorem:

Theorem 2.1 (ACA0). The following are equivalent:

(1) ATR0;
(2) every tree with uncountably many paths contains a perfect sub-

tree.

2.2. Partial orders. Within RCA0 saying that (P,�) is a partial order
means that P ⊆ N and � ⊆ P × P is reflexive, antisymmetric and
transitive. As usual, we use ≺ to denote the strict order. From now
on we refer to (P,�) simply as P . When we deal with several partial
orders at the same time, we use subscripts as in �P to distinguish
between the relations.

Finite partial orders can easily be studied in RCA0 and hence, when-
ever it is convenient and without further notice, we assume that P is
infinite.

Every time we define a partial order � on a set P we assume reflex-
ivity, and focus on explaining when distinct elements are related and
on checking transitivity.

We say that x, y ∈ P are comparable if x � y or y � x. If x and y
are incomparable we write x ⊥ y. A partial order P is a linear order
if all its elements are pairwise comparable. A linear order P is dense
if for all x, y ∈ P such that x ≺ y there exists z ∈ P with x ≺ z ≺ y.

A subset D ⊆ P is an antichain if all its elements are pairwise
incomparable, i.e.

(∀x, y ∈ D)(x 6= y =⇒ x ⊥ y).

We say that x, y ∈ P are compatible in P if there is z ∈ P such that
x � z and y � z. Notice that two elements of P might be compatible
in P but not in some X ⊆ P to which they belong.

A subset S ⊆ P is a strong antichain in P if its elements are pairwise
incompatible in P , i.e.

(∀x, y ∈ S)(∀z ∈ P )(x, y � z =⇒ x = y).

A subset I ⊆ P is an initial interval of P if

(∀x, y ∈ P )(x � y ∧ y ∈ I =⇒ x ∈ I).

An initial interval A of P is an ideal if every two elements of A are
compatible in A, i.e.

(∀x, y ∈ A)(∃z ∈ A)(x � z ∧ y � z).

If x ∈ P we let P⊥x = {y ∈ P : x ⊥ y} and define the upper and
lower cones determined by x setting

P�x = {y ∈ P : x � y} and P�x = {y ∈ P : y � x}.
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P�x and P≺x are defined in the obvious way. If X ⊆ P we write ↓X for
the downward closure of X, i.e.

⋃
x∈X P�x. Notice that the existence

of ↓X as a set is equivalent to ACA0 over RCA0.

2.3. Well-partial orders, scattered partial orders and lexico-
graphic sums. A partial order P is well-founded if P contains no
infinite descending sequence, i.e. no function f : N → P such that
f(i) � f(j) for all i < j. A well-founded linear order is a well-order.

A partial order P is a well-partial order if for every function f : N→
P there exist i < j such that f(i) � f(j). There are many classically
equivalent definitions of well-partial order. In particular a well-partial
order is a well-founded partial order with no infinite antichains. For a
reverse mathematics study of these equivalences we refer to [CMS04].
For our purposes, it is enough to know that all these equivalences are
provable in ACA0 and that RCA0 suffices to show that every well-partial
order is well-founded and has no infinite antichains.

The Kleene-Brouwer order on finite sequences is the linear order
defined by σ ≤KB τ if either τ v σ or σ(i) < τ(i) for the least i such
that σ(i) 6= τ(i). One of the main features of ≤KB is that, provably in
ACA0, its restriction to a tree T is a well-order if and only if T has no
paths ([Sim09, Lemma V.1.3]).

An embedding of a partial order Q into a partial order P is a function
f : Q → P such that for all x, y ∈ Q we have x �Q y if and only if
f(x) �P f(y). A partial order P is scattered if there is no embedding
of Q (the order of the rationals) into P .

Lemma 2.2 (RCA0). A partial order is scattered if and only if it does
not contain any dense linear order.

Proof. The left to right is immediate because RCA0 suffices to carry
out the usual back-and-forth argument. For the other direction, given
an embedding f : Q → P by recursion we can find D ⊆ Q dense such
that f restricted to D is strictly increasing with respect to the ordering
of the natural numbers. Thus the range of f restricted to D exists in
RCA0 and is a dense linear order. �

If P is a partial order and {Px : x ∈ P} is a sequence of partial
orders indexed by P we define the lexicographic sum of the Px along P ,
denoted by

∑
x∈P Px, to be the partial order on the set Q = {(x, y) : x ∈

P ∧ y ∈ Px} defined by

(x, y) �Q (x′, y′) ⇐⇒ x ≺P x′ ∨ (x = x′ ∧ y �Px y
′).

Lemma 2.3 (RCA0). The lexicographic sum of scattered partial orders
along a scattered partial order is scattered.

Proof. Let Q =
∑

x∈P Px be a lexicographic sum and suppose that Q
is not scattered. Fix an embedding f : Q→ Q.
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First suppose that for some a <Q b and x ∈ P we have f(a) = (x, y)
and f(b) = (x, y′). Then, the composition of f with the projection on
the second coordinate is an embedding of the rational interval (a, b)Q
into Px. Since Q embeds into its open intervals, Px is not scattered.

Otherwise, composing f with the projection on the first coordinate,
we obtain an embedding of Q into P , and P is not scattered. �

2.4. The set of initial intervals. We denote by I(P ) the collection
of initial intervals of the partial order P . In second order arithmetic,
I(P ) does not formally exist, and I ∈ I(P ) is a shorthand for the
formula “I is an initial interval of P”. To study Theorem 1.5 we need
to discuss the cardinality of I(P ).

We say that the partial order P has countably many initial intervals
if there exists a sequence {In : n ∈ N} such that for every I ∈ I(P ) we
have I = In for some n ∈ N. Otherwise, we say that P has uncountably
many initial intervals.

Within ACA0 we can prove that, if P has countably many initial
intervals, then there exists a sequence {In : n ∈ N} such that I ∈ I(P )
if and only if there exists n ∈ N such that I = In. In this case we write
I(P ) = {In : n ∈ N}.

The partial order P has perfectly many initial intervals if there exists
a nonempty perfect tree T ⊆ 2<N such that [T ] ⊆ I(P ), that is, for all
f ∈ [T ], the set {x ∈ N : f(x) = 1} ∈ I(P ).

A useful tool for studying the notions we just defined is the tree of
finite approximations of initial intervals of the partial order P . We
define the tree T (P ) ⊆ 2<N by letting σ ∈ T (P ) if and only if for all
x, y < |σ|:

• σ(x) = 1 implies x ∈ P ;
• σ(y) = 1 and x � y imply σ(x) = 1.

Notice that T (P ) is a pruned tree and that the paths in T (P ) are
exactly the characteristic functions of the initial intervals of P . From
the latter observation we easily obtain:

Lemma 2.4 (RCA0). Let P be a partial order.

(i) P has countably many initial intervals if and only if T (P ) has
countably many paths;

(ii) P has perfectly many initial intervals if and only if T (P ) con-
tains a perfect subtree.

In particular, the formula “P has perfectly many initial intervals”
is provably Σ1

1 within RCA0. Moreover a straightforward diagonal ar-
gument shows in RCA0 that a nonempty perfect tree has uncountably
many paths. Therefore we have that RCA0 proves that a partial or-
der with perfectly many initial intervals has uncountably many initial
intervals. Using the perfect tree theorem we obtain that ATR0 proves
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that a partial order with uncountably many initial intervals has actu-
ally perfectly many initial intervals. This implies that the formula “P
has uncountably many initial intervals” is provably Σ1

1 within ATR0.
In connection with this recall the following result due to Peter Clote

[Clo89]:

Theorem 2.5 (ACA0). The following are equivalent:

(1) ATR0;
(2) any linear order has countably many or perfectly many initial

intervals;
(3) any scattered linear order has countably many initial intervals.

Clote actually states the equivalence of ATR0 only with (2), but his
proofs yield also the equivalence with (3).

2.5. The system ATRX
0 . Recall that, by [Sim09, Theorem VIII.3.15],

ATR0 is equivalent over ACA0 to the statement

(∀X)(∀a ∈ OX)(HX
a exists)

where OX is the collection of (indices for) X-computable ordinals and
HX
a codes the iteration of the jump along a starting from X. This

naturally leads to consider lightface versions of ATR0, as in [Tan89],
[Tan90], and [Mar91]. Here we make explicit mention of the set pa-
rameter we use (rather then deal only with the parameterless case and
then invoke relativization) and let ATRX

0 be ACA0 plus the formula
(∀a ∈ OX)(HX

a exists). In ATRX
0 one can prove arithmetical transfi-

nite recursion along any X-computable well-order.
By checking the proof of the forward direction of Theorem 2.1 one

readily realizes that ATRX
0 proves the perfect tree theorem for X-

computable trees:

Theorem 2.6 (ATRX
0 ). Every X-computable tree with uncountably

many paths contains a perfect subtree.

The following is [Sim09, Lemma VIII.4.19]:

Theorem 2.7 (ATRX
0 ). There exists a countable coded ω-model M

such that X ∈M and M satisfies Σ1
1-DC0.

We will use the following corollary:

Corollary 2.8 (ATR0). For all X and Y there exists a countable coded
ω-model M such that X, Y ∈ M and M satisfies both Σ1

1-DC0 and
ATRX

0 .

Proof. We argue in ATR0 and let X and Y be given. By Σ1
1-AC0, which

is a consequence of ATR0, the main axiom of ATRX
0 is equivalent to

a Σ1
1 formula (∃Z)ϕ(Z,X) with ϕ arithmetic. This formula is true

in ATR0, and hence we can fix Z such that ϕ(Z,X). By Theorem
2.7 there exists a countable coded ω-model M of Σ1

1-DC0 such that
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X ⊕ Y ⊕ Z ∈M . In particular, X, Y ∈M and, as Z ∈M and M is a
model of Σ1

1-DC0 (hence also of Σ1
1-AC0), M satisfies ATRX

0 . �

3. Initial interval separation and essential unions

In this section we prove two technical results that are useful in the
remainder of the paper.

3.1. Initial interval separation. Our first result is a new equiva-
lence with WKL0, inspired by the usual Σ0

1 separation ([Sim09, Lemma
IV.4.4]) but producing separating sets which are also initial intervals.

Lemma 3.1. Over RCA0, the following are equivalent:

(1) WKL0;
(2) Σ0

1 initial interval separation. Let P be a partial order and
ϕ(x), ψ(x) be Σ0

1 formulas with one distinguished free number
variable.

If (∀x, y ∈ P )(ϕ(x) ∧ ψ(y) =⇒ y � x), then there exists an
initial interval I of P such that

(∀x ∈ P )((ϕ(x) =⇒ x ∈ I) ∧ (ψ(x) =⇒ x /∈ I)).

(3) Initial interval separation. Let P be a partial order and suppose
A,B ⊆ P are such that (∀x ∈ A)(∀y ∈ B)y � x. Then there
exists an initial interval I of P such that A ⊆ I and B ∩ I = ∅.

Proof. We first assume WKL0 and prove (2). Fix the partial order P
and let ϕ(x) ≡ (∃m)ϕ0(x,m) and ψ(n) ≡ (∃m)ψ0(x,m) be Σ0

1 formulas
with ϕ0 and ψ0 Σ0

0. Assume (∀x, y ∈ P )(ϕ(x) ∧ ψ(y) =⇒ y � x).
Form the binary tree T ⊆ 2<N by letting σ ∈ T if and only if σ ∈

T (P ) and for all x, y < |σ|:
(i) (∃m < |σ|)ϕ0(x,m) =⇒ σ(x) = 1, and

(ii) (∃m < |σ|)ψ0(x,m) =⇒ σ(x) = 0.

To see that T is infinite, we show that for every k ∈ N there exists
σ ∈ T with |σ| = k. Given k let

σ(x) = 1 ⇐⇒ x ∈ P ∧ (∃y,m < k)(ϕ0(y,m) ∧ x � y)

for all x < k. It is easy to verify that σ ∈ T . By weak König’s lemma,
T has a path f . By Σ0

0 comprehension, let I = {x : f(x) = 1}. It is
straightforward to see that I is as desired.

(3) is the special case of (2) obtained by considering the Σ0
0, and

hence Σ0
1, formulas x ∈ A and x ∈ B.

It remains to prove (3) =⇒ (1). It suffices to derive in RCA0

from (3) the existence of a set separating the disjoint ranges of two
one-to-one functions ([Sim09, Lemma IV.4.4]). Let f, g : N → N be
one-to-one functions such that (∀n,m ∈ N)f(n) 6= g(m). Define a
partial order on P = {an, bn, cn : n ∈ N} by letting cn � am if and only
if f(m) = n, bm � cn if and only if g(m) = n, and adding no other
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comparabilities. Let A = {an : n ∈ N} and B = {bn : n ∈ N}, so that
(∀x ∈ A)(∀y ∈ B)y � x. By (3) there exists an initial interval I of P
such that A ⊆ I and B ∩ I = ∅. It is easy to check that {n : cn ∈ I}
separates the range of f from the range of g. �

3.2. Essential unions of sets. Our second result deals with finite
unions of sets and will be applied to finite unions of ideals.

Definition 3.2 (RCA0). Let I ⊆ N. A family of sets {Ai : i ∈ I} is
essential if

(∀i ∈ I)(Ai *
⋃

j∈I,j 6=i

Aj).

The union of such a family is called an essential union.

Not every family of sets can be made essential without loosing ele-
ments from the union. The simplest example is a sequence {An : n ∈ N}
of sets such that An ⊂ An+1 for every n. However the following shows
that, provably in RCA0, every finite family of sets can be made essential.

Lemma 3.3 (RCA0). For every family of sets {Ai : i ∈ F} with F finite
there exists I ⊆ F such that {Ai : i ∈ I} is essential and⋃

i∈F

Ai =
⋃
i∈I

Ai.

Proof. Let

n0 = min{n : (∃I ⊆ F )(|I| = n ∧
⋃
i∈F

Ai =
⋃
i∈I

Ai)}.

RCA0 proves that n0 exists, otherwise by Σ0
1-induction one could prove

(∀n)(∀I ⊆ F )(|I| ≤ n→
⋃
i∈F

Ai 6=
⋃
i∈I

Ai),

which is clearly false.
If I ⊆ F is such that |I| = n0 and

⋃
i∈F Ai =

⋃
i∈I Ai then it is

immediate that {Ai : i ∈ I} is essential. �

4. The left to right directions

In this section we study Theorem 1.2 and the left to right directions of
Theorems 1.1, 1.3, and 1.5. It turns out that the left to right direction
of Theorem 1.5 is equivalent to ATR0 and the other statements are
equivalent to ACA0.

4.1. Equivalences with ACA0. We consider the following equivalence,
which includes Theorems 1.2 and 1.3.

Theorem 4.1. Let P be a partial order. Then the following are equiv-
alent:

(1) P is a finite union of ideals;
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(2) there is a finite bound on the size of the strong antichains in P ;
(3) P has no infinite strong antichains.

We notice that (1) =⇒ (2) and (2) =⇒ (3) are easily provable in
RCA0. We show that (2) =⇒ (1) and (3) =⇒ (2) are provable in
ACA0.

We start with implication (2) =⇒ (1).

Lemma 4.2 (ACA0). Let P be a partial order with no arbitrarily large
finite strong antichains. Then P is a finite union of ideals.

Proof. Let ` ∈ N be the maximum size of a strong antichain in P
and let S be a strong antichain of size `. For every z ∈ S define by
arithmetical comprehension

Az = {x ∈ P : x and z are compatible}.
Since S is maximal with respect to inclusion it is immediate that

P =
⋃
z∈S Az and it suffices to show that each Az is an ideal.

Fix z ∈ S and x, y ∈ Az. Let x0, y0 be such that x � x0, y � y0,
and z � x0, y0. It suffices to show that x0 and y0 are compatible in Az.
If this is not the case, x0 and y0 are incompatible also in P (because
P�x0 ⊆ P�z ⊆ Az). Moreover for each w ∈ S \ {z} each of x0 and y0 is
incompatible with w in P because z and w are incompatible in P . Thus
(S\{z})∪{x0, y0} is a strong antichain of size `+1, a contradiction. �

To obtain (3) =⇒ (2) of Theorem 4.1 we are going to use the
existence of maximal (with respect to inclusion) strong antichains. We
first show that this statement is equivalent to ACA0.

Lemma 4.3. Over RCA0, the following are equivalent:

(1) ACA0;
(2) every strong antichain in a partial order extends to a maximal

strong antichain;
(3) every partial order contains a maximal strong antichain.

Proof. We show (1) =⇒ (2). Let P be a partial order and S ⊆ P
be a strong antichain. By recursion we dene f : N → {0, 1} by letting
f(x) = 1 if and only if S∪{y < x : f(y) = 1}∪{x} is a strong antichain
in P . Then T = {x : f(x) = 1} is a maximal strong antichain with
S ⊆ T .

Implication (2) =⇒ (3) is trivial. To show (3) =⇒ (1), we argue in
RCA0 and derive from (3) the existence of the range of any one-to-one
function. Given f : N → N one-to-one consider P = {an, bn, cn : n ∈
N}. For all n,m ∈ N let an � cm if and only if bn � cm if and only
if f(m) = n, and add no other comparabilities. By (3), let S ⊆ P
be a maximal strong antichain. Then, n belongs to the range of f
if and only if an /∈ S ∨ bn /∈ S. Thus the range of f exists by Σ0

0

comprehension. �



12 EMANUELE FRITTAION AND ALBERTO MARCONE

The following is implication (3) =⇒ (2) of Theorem 4.1, i.e. our
formalization of the left to right direction of Theorem 1.2.

Lemma 4.4 (ACA0). Let P be a partial order with no infinite strong
antichains. Then there are no arbitrarily large finite strong antichains
in P .

Proof. Suppose for a contradiction that P has arbitrarily large finite
strong antichains but no infinite strong antichains (the existence of such
a pair is proved below). We define by recursion a sequence of elements
(xn, yn) ∈ P 2.

Let (x0, y0) be a pair such that x0 and y0 are incompatible in P
and P�x0 contains arbitrarily large finite strong antichains. Suppose
we have defined xn and yn. Using arithmetical comprehension, search
for a pair (xn+1, yn+1) such that xn � xn+1, yn+1, xn+1 and yn+1 are
incompatible in P , and P�xn+1 contains arbitrarily large finite strong
antichains.

To show that the recursion never stops assume that U ⊆ P is a final
interval with arbitrarily large finite strong antichains (U = P at stage
0, U = P�xn at stage n + 1). By Lemma 4.3 there exists a maximal
strong antichain S ⊆ U with at least two elements. By hypothesis, S
is finite and we apply the following claim:

Claim. There exists x ∈ S such that P�x contains arbitrarily large
finite strong antichains.

Proof of claim. Let n = |S|. We first show that for every k ≥ 1 there
exists u ∈ S such that P�u contains a strong antichain of size k.

Given k ≥ 1, let T be a strong antichain of size n · k. Since S is
maximal, every element y ∈ T is compatible with some element of S.
For any y ∈ T let (u(y), v(y)) be the least pair such that u(y) ∈ S and
u(y), y � v(y). Then {v(y) : y ∈ T} is again a strong antichain of size
n ·k. As y 7→ u(y) defines a function from T to S, it easily follows that
for some u ∈ S the upper cone P�u contains at least k elements of the
form v(y) with y ∈ T .

Now, for all k ≥ 1, let uk ∈ S be such that P�uk contains a strong
antichain of size k. Since S is finite, by the infinite pigeonhole principle
(which is provable in ACA0), there exists x ∈ S such that x = uk for
infinitely many k. The upper cone P�x thus contains arbitrarily large
finite strong antichains. �

In particular, xn � ym for all n < m and xn and yn are incompatible
in P . It follows that yn is incompatible with ym for all n < m. Then
{yn : n ∈ N} is an infinite strong antichain, for the desired contradic-
tion. �

The following Theorem shows that our use of ACA0 in several of the
preceding Lemmas is necessary and establish the reverse mathematics
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results about Theorem 1.2 and the left to right directions of Theorems
1.1 and 1.3 (these are respectively conditions (3), (5), and (4) in the
statement of the Theorem). We also show that apparently weaker
statements, such as the restriction of Theorems 1.1 and 1.3 to well-
partial orders, require ACA0.

Theorem 4.5. Over RCA0, the following are pairwise equivalent:

(1) ACA0;
(2) every partial order with no arbitrarily large finite strong an-

tichains is a finite union of ideals;
(3) every partial order with no infinite strong antichains does not

contain arbitrarily large finite strong antichains;
(4) every partial order with no infinite strong antichains is a finite

union of ideals;
(5) if a partial order has no infinite antichains then every initial

interval is a finite union of ideals;
(6) every well-partial order is a finite union of ideals.

Proof. (1) =⇒ (2) is Lemma 4.2 and (1) =⇒ (3) is Lemma 4.4.
The combination of Lemma 4.4 and Lemma 4.2 shows (1) =⇒ (4).
Since a strong antichain in a subset of a partial order is an antichain,
(4) =⇒ (5) holds. For (5) =⇒ (6), recall that, provably in RCA0, a
well-partial order has no infinite antichains.

It remains to show that each of (2), (3) and (6) implies ACA0. Rea-
soning in RCA0 fix a one-to-one function f : N → N. In each case we
build a suitable partial order P which encodes the range of f .

We start with (2) =⇒ (1). Let P = {an, bn : n ∈ N} ∪ {c}. We
define a partial order on P by letting:

(i) an � c for all n;
(ii) bn � bm for n ≤ m;
(iii) an � bm if and only if (∃i < m)f(i) = n;

and adding no other comparabilities. It is easy to verify that every
strong antichain in P has at most 2 elements. By (2) P is a finite
union of ideals A0, . . . , Ak. By Lemma 3.3, we may assume that this
union is essential. Let us assume b0 ∈ A0.

By Σ0
1-induction (actually Σ0

0) we prove that (∀m)(bm ∈ A0). The
base step is obviously true. Suppose bm ∈ A0 and bm+1 /∈ A0. Then
A0 = {x ∈ P : x � bm} (because every element � bm is � bm+1).
Suppose bm+1 ∈ A1. Then A0 ⊆ A1 and the decomposition is not
essential, a contradiction. Therefore, A0 contains all the bm’s. Now, it
is straightforward to see that (∃m)f(m) = n if and only if an ∈ A0, so
that the range of f can be defined by ∆0

0 comprehension.

To prove (3) =⇒ (1) we exploit the notion of false and true stage.
Recall that n ∈ N is said to be a false stage for f (or simply false)
if f(k) < f(n) for some k > n and true otherwise. We may assume
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to have infinitely many false stages, since otherwise the range of f
exists by ∆0

1 comprehension. On the other hand, there are always
infinitely many true stages (i.e. for every m there exists n > m which
is true), because otherwise we can build an infinite descending sequence
of natural numbers.

Let P = {an, bn : n ∈ N} and define

(i) bn � bm for all n < m;
(ii) an � bm if and only if f(k) < f(n) for some k with n < k ≤ m

(i.e. if at stage m we know that n is false);

and there are no other comparabilities.
Notice that the bn’s and the an’s with n false are pairwise compatible

in P . Therefore every infinite strong antichain in P consists of infinitely
many an’s with n true and at most one bn or an with n false. Possibly
removing that single element we have an infinite set of true stages.
From this in RCA0 we can obtain a strictly increasing enumeration of
true stages i 7→ ni. Since (∃n)f(n) = m if and only if (∃n ≤ nm)f(n) =
m, the range of f exists by ∆0

1 comprehension. Thus the existence of
an infinite strong antichain in P implies the existence of the range of
f in RCA0.

To apply (3) and conclude the proof we need to show that P contains
arbitrarily large finite strong antichains. To do this apparently we need
Σ0

2-induction (which is not available in RCA0) to show that for all k
there exists k distinct true stages.

To remedy this problem (with the same trick used for this purpose
in [MS11, Lemma 4.2]) we replace each an with n+1 distinct elements.
Thus we set P ′ = {ain, bn : n ∈ N, i ≤ n} and substitute (ii) with
ain ≤P ′ bm if and only if f(k) < f(n) for some k with n < k ≤ m.
Then also the existence of an infinite strong antichain in P ′ suffices
to define the range of f in RCA0. However the existence of arbitrarily
large finite strong antichains in P ′ of the form {ain : i ≤ n} follows
immediately from the existence of infinitely many true stages.

We now show (6) =⇒ (1). We again use false and true stages and
as before we assume to have infinitely many false stages. The idea for
P is to combine a linear order P0 = {an : n ∈ N} of order type ω+ω∗

with a linear order P1 = {bn : n ∈ N} of order type ω. The false and
true stages give rise respectively to the ω and ω∗ part of P0, and every
false stage is below some element of P1. We proceed as follows.

Let P = {an, bn : n ∈ N}. For n ≤ m, set

(i) an � am if f(k) < f(n) for some n < k ≤ m (i.e. if at stage m
we know that n is false);

(ii) am � an if f(k) > f(n) for all n < k ≤ m (i.e. if at stage m we
believe n to be true).
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When condition (i) holds, we also put an � bm. Then we linearly order
the bm’s by putting bi � bj if and only if i ≤ j. There are no other
comparabilities.

It is not difficult to verify that P is a partial order with no infinite
antichains. Note that if n is false and m > n is such that f(m) < f(n),
then {i : ai � an} ⊆ {i : i < m} is finite, while if n is true, then
{i : an � ai} ⊆ {i : i ≤ n} is finite. This explains our assertion that P0

has order type ω + ω∗.
First assume that P is not a well-partial order. By definition, there

exists g : N→ P such that i < j implies g(i) � g(j). As for every false
n there are only finitely many x ∈ P such that an � x, we must have
g(i) 6= an for all i and for all false n. We may assume that g(i) 6= bn
for all i, n, since there are finitely many bm such that bn � bm. We
thus have g(i) = ani

with ni true for all i. Since am � an and n < m
imply n false, the map i 7→ ni is a strictly increasing enumeration of
true stages. As before, the range of f exists by ∆0

1 comprehension.
We now assume that P is a well-partial order. Apply (6), so that

P =
⋃
{Ai : i < k} is a finite union of ideals. By Lemma 3.3 we may

assume that the union is essential so that there exists an ideal, say A0,
that contains all the bm’s.

We claim that n is false if and only if an ∈ A0. To see this, let n be
false. Thus an � bm for some m, and hence an ∈ A0. Conversely, if
an ∈ A0 then it is compatible with, for instance, b0, and yet again it is
� bm for some m. Hence, the set of true stages is {n : an /∈ A0}, and
the conclusion follows as before. �

4.2. Equivalences with ATR0. We now consider the left to right di-
rection of Theorem 1.5, i.e. the statement every countable scattered
partial order with no infinite antichains has countably many initial
intervals. We start with a technical Lemma:

Lemma 4.6 (ACA0). If a partial order P has perfectly many initial
intervals, then there exists x ∈ P such that either

(i) P⊥x has uncountably many initial intervals, or
(ii) both P≺x and P�x have uncountably many initial intervals.

Proof. Let P be a partial order with perfectly many initial intervals.
Let T ⊆ T (P ) be a perfect tree.

We first show that there exist x ∈ P such that both

{I ∈ I(P ) : x /∈ I} and {I ∈ I(P ) : x ∈ I}

are uncountable. Let τ ∈ T be such that both τ0 = τa〈0〉 and τ1 =
τa〈1〉 belong to T . Let x = |τ | and notice that x ∈ P . For i < 2
define Ti = {σ ∈ T : σ v τi ∨ τi v σ}. The trees T0 and T1 are perfect
and witness the fact that the two collections of initial intervals are
uncountable.
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Now, suppose that condition (i) fails and let I(P⊥x) = {Jn : n ∈ N}.
We aim to show that (ii) holds.

Suppose for a contradiction that P≺x has countably many initial
intervals and let I(P≺x) = {In : n ∈ N}. Then it is not difficult to
show that

{I ∈ I(P ) : x /∈ I} = {In ∪ ↓ Jm : n,m ∈ N}.

This contradicts the fact that {I ∈ I(P ) : x /∈ I} is uncountable.
Similarly, suppose that P�x has countably many initial intervals and

let I(P�x) = {In : n ∈ N}. Then, it is not difficult to show that

{I ∈ I(P ) : x ∈ I} = {↓({x} ∪ In ∪ Jm) : n,m ∈ N}.

This contradicts the fact that {I ∈ I(P ) : x ∈ I} is uncountable.
Therefore, condition (ii) holds. �

Theorem 4.7 (ATR0). Every scattered partial order with no infinite
antichains has countably many initial intervals.

Proof. Let P be a partial order with uncountably many initial intervals.
Let Fin(P ) the set of (codes of) finite subsets of P . For all F,G,H ∈

Fin(P ), let

PF,G,H =
⋂
x∈F

P≺x ∩
⋂
x∈G

P�x ∩
⋂
x∈H

P⊥x.

We want to define a pruned tree T ⊆ 3<N and a function f : T →
Fin(P )3 such that the following hold (where f(σ) = (Fσ, Gσ, Hσ) and
Pσ = Pf(σ)):

(i) f(〈〉) = (∅, ∅, ∅);
(ii) for all σ ∈ T , σa〈0〉 ∈ T if and only if σa〈1〉 ∈ T if and only

if σa〈2〉 /∈ T (in other words there are two possibilities: either
exactly σa〈0〉 and σa〈1〉 belong to T , or only σa〈2〉 ∈ T );

(iii) if σa〈0〉 ∈ T , then f(σa〈0〉) = (Fσ∪{x}, Gσ, Hσ) and f(σa〈1〉) =
(Fσ, Gσ ∪ {x}, Hσ) for some x ∈ Pσ;

(iv) if σa〈2〉 ∈ T , then f(σa〈2〉) = (Fσ, Gσ, Hσ ∪ {x}) for some
x ∈ Pσ.

We first show that if there exist T and f as above, then P is not
scattered or it contains an infinite antichain.

First suppose there exists a path g ∈ [T ] such that g(n) = 2 for
infinitely many n. Then let

D =
⋃
n∈N

Hg �n.

It is easy to check, using (iv) and the definition of PF,G,H , that D is an
infinite antichain.

If there are no paths g ∈ [T ] such that g(n) = 2 for infinitely many
n then it is easy to see, using (ii), that T is perfect. For all σa〈0〉 ∈ T ,
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let xσ be the unique element of Fσa〈0〉 \ Fσ. We claim that

Q = {xσ : σa〈0〉 ∈ T}
is a dense linear order in P .

We first note that xσ 6= xτ for σ, τ ∈ T with σ 6= τ . Now fix distinct
xσ, xτ ∈ Q with the goal of showing that they are comparable in P and
that there exists an element of Q strictly between them. First assume
that σ and τ are comparable as sequences, let us say σ @ τ . Then,
using (iii), xτ ≺ xσ if σa〈0〉 v τ and xσ ≺ xτ if σa〈1〉 v τ . Suppose
xτ ≺ xσ (the other case is similar) and let η ∈ T so that τa〈1〉 v η
and ηa〈0〉 ∈ T . Then xτ ≺ xη ≺ xσ by (iii). Suppose now that σ
and τ are not one initial segment of the other. We may assume that
ηa〈0〉 v σ and ηa〈1〉 v τ for some η. Then xη ∈ Q and, using (iii)
again, xσ ≺ xη ≺ xτ .

It remains to show that we can define T and f satisfying (i)–(iv).
By Theorem 2.5, P has perfectly many initial intervals. Let U be

a perfect subtree of T (P ). By Corollary 2.8, there exists a countable
coded ω-model M such that P,U ∈ M and M satisfies Σ1

1-DC0 and
ATRP

0 .
We recursively define T and f using M as a parameter. Let 〈〉 ∈ T

and f(〈〉) = (∅, ∅, ∅) as required by (i). Note that M satisfies “T (P〈〉)
contains a perfect subtree”. Let σ ∈ T and assume by arithmetical
induction that M satisfies “T (Pσ) contains a perfect subtree”. Since
M is a model of ACA0, by Lemma 4.6 applied to Pσ, there exists x ∈ Pσ
such that either

(a) M satisfies “T (Pσ ∩ P⊥x) has uncountably many paths”, or
(b) M satisfies “both T (Pσ∩P≺x) and T (Pσ∩P�x) have uncountably

many paths”.

Search for the least x with this arithmetical property. If (a) holds (and
we can check this arithmetically outside M), use ATRP

0 within M to
apply Theorem 2.6 to the P -computable tree T (Pσ ∩ P⊥x). We obtain
that M satisfies “T (Pσ ∩ P⊥x) contains a perfect subtree”. Thus, let
σa〈2〉 ∈ T and set f(σa〈2〉) = (Fσ, Gσ, Hσ ∪ {x}). If (b) holds, then
arguing analogously we obtain that M satisfies “both T (Pσ ∩P≺x) and
T (Pσ ∩ P�x) contain perfect subtrees”. Thus let σa〈0〉, σa〈1〉 ∈ T and
set

f(σa〈0〉) = (Fσ ∪ {x}, Gσ, Hσ) and f(σa〈1〉) = (Fσ, Gσ ∪ {x}, Hσ).

In any case, (ii)-(iv) are satisfied and the induction hypothesis that M
satisfies “T (Pσ) contains a perfect subtree” is preserved. �

Theorem 4.8. Over ACA0, the following are equivalent:

(1) ATR0;
(2) every scattered partial order with no infinite antichains has count-

ably many initial intervals;
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(3) every scattered linear order has countably many initial intervals.

Proof. (1) =⇒ (2) is Theorem 4.7 and (2) =⇒ (3) is immediate.
We show (3) =⇒ (1) by essentially repeating the proof of [Clo89,
Theorem 18].

Assume ACA0. We wish to prove ATR0. By [Sim09, Theorem V.5.2],
ATR0 is equivalent (over RCA0) to the statement asserting that for
every sequence of trees {Ti : i ∈ N} such that every Ti has at most one
path, there exists the set {i ∈ N : [Ti] 6= ∅}. So let {Ti : i ∈ N} be such
a sequence. Let us order each Ti with the Kleene-Brouwer order ≤KB

and define the linear order L =
∑

i∈N Ti
We aim to show that L is scattered. By Lemma 2.3, it suffices to

prove that every Ti is scattered. To this end, we show that if a tree
T has at most one path then the Kleene-Brouwer order on T is of the
form

(∗) X +
∑
n∈ω∗

Yn,

where X and the Yn are (possibly empty) well-orders. Applying Lemma
2.3 again, we obtain that T is scattered.

If T has no path, then ACA0 proves that ≤KB well-orders T , and
hence we can take X = T and the Yn’s empty. Now let f be the
unique path of T . Let X = {σ ∈ T : (∀n)σ <KB f �n} and Yn = {σ ∈
T : f �n + 1 <KB σ ≤KB f �n}, for all n ∈ N. It is straightforward to
see that (∗) holds. We now claim that X is a well-order. Suppose not,
and let (σn)n∈N be an infinite descending sequence in X. Form the tree
T0 = {σ ∈ T : (∃n)σ v σn}. Then T0 is not well-founded and so it has
a path. As T0 is a subtree of T , this path must be f . Let i ∈ N be such
that σ0 � i = f � i and σ0(i) < f(i) (such an i exists because σ0 ∈ X).
On the other hand, f � i+1 ∈ T0, and thus f � i+1 v σn for some n ∈ N.
It follows that σ0 <KB σn, a contradiction. To show that each Yn is a
well-order notice that Yn = {σ ∈ T : f �n @ σ∧f(n) < σ(n)}∪{f �n}.

Apply (3) to L and let I(L) = {In : n ∈ N}. It is easy to check that
Ti has a path if and only if

(∃n)
(⋃
j<i

Tj ⊆ In ∧ Ti * In ∧ L \ In has no least element
)
.

Therefore, the set {i ∈ N : [Ti] 6= ∅} exists by arithmetical comprehen-
sion. �

It is worth noticing that a natural weakening of condition (3) of
Theorem 4.8 is provable in RCA0:

Lemma 4.9 (RCA0). Every linear order with perfectly many initial
intervals is not scattered.

Proof. Let L be a linear order and T ⊆ T (L) be a perfect tree. Define

Q = {x ∈ L : (∃σ ∈ T )(|σ| = x ∧ σa〈0〉, σa〈1〉 ∈ T )}.
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The argument showing that Q is a dense subset of L is similar to the
one in the proof of Theorem 4.7. �

5. The right to left directions

In this section we study the right to left directions of Theorems
1.1, 1.3, and 1.5. The right to left direction of Theorem 1.5 naturally
splits into two statements with the same hypothesis (the existence of
countably many initial intervals) and different conclusions (the partial
order is scattered and the partial order has no infinite antichains). We
have thus four different statements altogether. All these statements
have simple proofs in ACA0, but it turns out that each of them can be
proved in a properly weaker system.

5.1. Proofs in RCA0. We start with a simple observation about the
right to left direction of Theorem 1.3.

Lemma 5.1 (RCA0). Every partial order which is a finite union of
ideals has no infinite strong antichains.

Proof. Since an ideal does not contain incompatible elements, if the
partial order is the union of k ideals we have even a finite bound on
the size of strong antichains. �

Another statement that can be proved in RCA0 is the following half
of the right to left direction of Theorem 1.5.

Theorem 5.2 (RCA0). Every partial order with countably many initial
intervals is scattered.

Proof. We show that if P is not scattered, then P has perfectly many
initial intervals. By Lemma 2.2 we may assume that P contains a dense
linear order Q.

We define by recursion an embedding f : 2<N → T (P ). Thus T0 =
{τ ∈ T (P ) : (∃σ ∈ 2<N)τ v f(σ)} is a perfect subtree of T (P ). Since
τ ∈ T0 if and only if (∃σ ∈ 2<N)(|σ| = |τ | ∧ τ v f(σ)), T0 exists in
RCA0.

We say that x ∈ P is free for τ ∈ T (P ) if

(∀y < |τ |)((τ(y) = 1 =⇒ x � y) ∧ (τ(y) = 0 =⇒ y � x)).

In other words, x is free for τ if and only if there exist τ0, τ1 ∈ T (P )
with τ @ τi and τi(x) = i. Since T (P ) is a pruned tree this means
that there exist two initial intervals of P whose characteristic function
extends τ , one containing x and the other avoiding x.

Let f(〈〉) = 〈〉. Suppose we have defined f(σ) = τ . Assume by
Σ0

1 induction that Q contains at least two (and hence infinitely many)
elements that are free for τ . Then search for a ≺ b ≺ c in Q that are
free for τ . We will define τ0, τ1 ∈ T (P ) which are extensions of τ with
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|τi| = b+ 1 and τi(b) = i. Thus τ0 and τ1 are incompatible and we can
let f(σa〈i〉) = τi.

We show how to define τ0 (to define τ1 replace a with b and b with
c). Since {x ∈ P : x < b} is finite, we can find a′, b′ ∈ Q with a ≺
a′ ≺ b′ ≺ b such that a′, b′ > b, and for no x ∈ P with x < b we have
a′ ≺ x ≺ b′. Given x < |τ0| we need to define τ0(x), and we proceed by
cases (notice that the first three conditions are determined by the fact
that we want τ0 ∈ T (P ) and τ0 w τ):

• if x /∈ P let τ0(x) = 0;
• if x ∈ P is not free for τ because there exists y < |τ | such that
τ(y) = 0 and y � x let τ0(x) = 0;
• if x ∈ P is not free for τ because there exists y < |τ | such that
τ(y) = 1 and x � y let τ0(x) = 1;
• if x is free for τ we define τ0(x) according to the following cases:

(i) if x ≺ a′, let τ0(x) = 1;
(ii) if x � b′, let τ0(x) = 0;

(iii) otherwise, let τ0(x) = 0.

It is not difficult to check that τ0 extends τ , τ0(b) = 0 and both a′ and
b′ are free for τ0, preserving the induction hypothesis. �

With regard to the other half of the right to left direction of Theorem
1.5, RCA0 proves the following.

Lemma 5.3 (RCA0). An infinite antichain has perfectly many initial
intervals.

Proof. If P is an antichain then the tree T (P ) consists of all σ ∈ 2<N

such that x /∈ P implies σ(x) = 0. If P is infinite it is immediate that
this tree is perfect and thus Lemma 2.4 implies that P has perfectly
many initial intervals. �

5.2. Proofs in WKL0. We now look at the right to left direction of
Theorem 1.1, which states that every partial order with an infinite
antichain contains an initial interval that cannot be written as a finite
union of ideals. The proof can be carried out very easily in ACA0: just
take the downward closure of the given antichain. We improve this
upper bound by showing that WKL0 suffices. We first point out that
RCA0 proves a particular instance of the statement.

Lemma 5.4 (RCA0). Let P be a partial order with a maximal (with
respect to inclusion) infinite antichain. Then there exists an initial
interval that is not a finite union of ideals.

Proof. Let D be a maximal infinite antichain of P . The maximality of
D implies that for all x ∈ P we have

(∃d ∈ D)x � d ⇐⇒ ¬(∃d ∈ D)d ≺ x.



REVERSE MATHEMATICS AND INITIAL INTERVALS 21

Therefore the downward closure of D is ∆0
1 definable and thus exists

in RCA0. Letting I = {x ∈ P : (∃d ∈ D)x � d} we obtain an initial
interval which is not a finite union of ideals, since distinct elements of
D are incompatible in I. �

To use Lemma 5.4 in the general case we need to extend an infinite
antichain to a maximal one. It is easy to show that RCA0 proves the
existence of maximal antichains in any partial order. On the other
hand, we now show in RCA0 that the statement that every antichain is
contained in a maximal antichain is equivalent to ACA0.

Lemma 5.5. Over RCA0, the following are equivalent:

(1) ACA0;
(2) every antichain in a partial order extends to a maximal an-

tichain.

Proof. We first show (1) =⇒ (2). Let P be a partial order and
D ⊆ P be an antichain. By recursion we define f : N → {0, 1} by
letting f(x) = 1 if and only if D ∪ {y < x : f(y) = 1} ∪ {x} is an
antichain in P . Then E = {x : f(x) = 1} is a maximal antichain with
D ⊆ E.

For the reversal argue in RCA0 and fix a one-to-one function f : N→
N. Let P = {an, bn : n ∈ N} and define the partial order by letting bm �
an if and only if f(m) = n, and adding no other comparabilities. Then
apply (2) to the antichain D = {bm : m ∈ N} and obtain a maximal
antichain E such that D ⊆ E. It is immediate that (∃m)f(m) = n if
and only if an /∈ E, so that in RCA0 we can prove the existence of the
range of f . �

We now show how to prove the right to left direction of Theorem 1.1
in WKL0.

Theorem 5.6 (WKL0). Every partial order with an infinite antichain
contains an initial interval that is not a finite union of ideals.

Proof. Let P be a partial order containing an infinite antichain D. Let
ϕ(x) and ψ(x) be the Σ0

1 formulas x ∈ D and (∃y)(y ∈ D ∧ y ≺ x)
respectively. It is obvious that (∀x, y ∈ P )(ϕ(x) ∧ ψ(y) =⇒ y � x).
By Σ0

1 initial interval separation (Lemma 3.1), there exists an initial
interval I ⊆ P such that

(∀x ∈ P )((ϕ(x) =⇒ x ∈ I) ∧ (ψ(x) =⇒ x /∈ I)).

Therefore, I contains D and no element above any element of D. To see
that I cannot be the union of finitely many ideals notice that distinct
x, x′ ∈ D cannot belong to the same ideal A ⊆ I, for otherwise there
would be z ∈ I such that x, x′ � z, which implies ψ(z). �

We do not know whether the statement of Theorem 5.6 implies
WKL0. Notice however that the proof above uses the existence of an
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initial interval I containing the infinite antichain D and no elements
above any element of D. We now show that even the existence of an
initial interval I containing infinitely many elements of the antichain D
and no elements above any element of D is equivalent to WKL0. There-
fore a proof of the right to left direction of Theorem 1.1 in a system
weaker than WKL0 must avoid using such an I.

Lemma 5.7. Over RCA0, the following are equivalent:

(1) WKL0;
(2) if a partial order P contains an infinite antichain D, then P

has an initial interval I such that D ⊆ I and (∀x ∈ D)(∀y ∈
I)x ⊀ y;

(3) if a partial order P contains an infinite antichain D, then P
has an initial interval I such that I ∩ D is infinite and (∀x ∈
D)(∀y ∈ I)x ⊀ y.

Proof. The proof of (1) =⇒ (2) is contained in Theorem 5.6 and (2)
=⇒ (3) is obvious, so that we just need to show (3) =⇒ (1). Fix
one-to-one functions f, g : N → N such that (∀n,m ∈ N)f(n) 6= g(m).
Let P = {an, bn : n ∈ N} the partial order defined by letting

(i) an � bm if m = g(n);
(ii) bk � an if (∃i < n)(i < g(n) ∧ f(i) = k), i.e. k enters the range

of f before stage min{n, g(n)};
(iii) bk � bm if (∃i < m)(f(i) = k ∧ (∀j < i)f(j) 6= m), i.e. k enters

the range of f before stage m and when m has not entered the
range of f yet,

and adding no other comparabilities.
To check that P is indeed a partial order we need to show that it is

transitive. The main cases are the following:

• If bk � an � bm we have m = g(n) and the existence of i <
min{n,m} such that f(i) = k. By the hypothesis on f and g
we have f(j) 6= m for every j, and in particular for every j < i,
so that bk � bm follows.
• If bk � bm � b` there exist i < m and i′ < ` such that f(i) = k,

(∀j < i)f(j) 6= m, f(i′) = m, and (∀j < i′)f(j) 6= `. The
second and third condition imply i ≤ i′, so that i < `, (∀j <
i)f(j) 6= ` and we obtain bk � b`.
• If bk � bm � an there exist i < m and i′ < n such that f(i) = k,

(∀j < i)f(j) 6= m, i′ < g(n), and f(i′) = m. Again we obtain
i ≤ i′, so that i < min{n, g(n)} and we can conclude bk � an.

The set D = {an : n ∈ N} is an infinite antichain. Applying (3)
we obtain an initial interval I of P which contains infinitely many
elements of D and no elements above any element of D. We now check
that {k ∈ N : bk ∈ I} separates the range of f from the range of g.

If k = g(n) it is immediate that an ≺ bk so that bk /∈ I.
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On the other hand suppose that k = f(i). The set A = {n : g(n) ≤ i}
is finite by the injectivity of g and we can let m = max({i}∪A). Since
D ∩ I is infinite there exists n > m such that an ∈ I. Then we have
i < n and i < g(n) (because n /∈ A), so that bk � an. Therefore
bk ∈ I. �

We notice that another weakening of statement (2) of Lemma 5.7
which is equivalent to WKL0 is the following: “if a partial order P
contains an infinite antichain D, then there exists an initial interval
I such that D ⊆ I and (∀y ∈ I)(∃∞x ∈ D)x ⊀ y” (the proof of the
reversal uses the partial order of the proof above equipped with the
inverse order). However this statement does not imply the statement
of Theorem 5.6.

Our next goal is to show that WKL0 suffices to prove the half of the
right to left direction of Theorem 1.5 that was not proved in RCA0

in Theorem 5.2. In other words, we study the statement that every
partial order with countably many initial intervals has no infinite an-
tichains. Understanding initial intervals of partial orders with an infi-
nite antichain leads to study the relationship between initial intervals
of partial orders contained one into the other.

Lemma 5.8. Over RCA0, the following are equivalent:

(1) WKL0;
(2) Let Q and P be partial orders and f be an embedding of Q into

P . Then

I(Q) = {f−1(J) : J ∈ I(P )};

(3) Let Q be a subset of a partial order P . Then I(Q) = {J∩Q : J ∈
I(P )}.

Proof. We start with (1) =⇒ (2). Let f : Q → P be an embedding.
It is easy to check that if J ∈ I(P ) then f−1(J) ∈ I(Q), so that the
right to left inclusion is established even in RCA0.

For the other inclusion fix I ∈ I(Q). Let ϕ(x) and ψ(x) be the Σ0
1

formulas (∃y ∈ Q)(y ∈ I ∧ x = f(y)) and (∃y ∈ Q)(y /∈ I ∧ x = f(y))
respectively. Since f is an embedding and I is an initial interval, we
have

(∀x, y ∈ P )(ϕ(x) ∧ ψ(y) =⇒ y �P x).

Apply Σ0
1 initial interval separation (Lemma 3.1) to get J ∈ I(P ) such

that f(I) ⊆ J and J ∩ f(Q \ I) = ∅. It is immediate that I = f−1(J).

Since the implication (2) =⇒ (3) is obvious, it remains to show (3)
=⇒ (1).

Instead of WKL0, we prove statement (3) of Lemma 3.1, i.e. initial
interval separation. Let P be a partial order and A,B ⊆ P such that
(∀x ∈ A)(∀y ∈ B)y � x. Let Q = A ∪ B ⊆ P and notice that
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A ∈ I(Q). By (3) there exists J ∈ I(P ) such that A = J ∩ Q. It is
easy to see that A ⊆ J and J ∩B = ∅, completing the proof. �

Notice that the obvious proof of the nontrivial direction of (2),
namely given I ∈ I(Q) let J be the downward closure of f(I), uses
arithmetical comprehension.

Corollary 5.9 (WKL0). Let P and Q be partial orders such that Q
embeds into P . If P has countably many initial intervals, then Q does.

Proof. Fix an embedding f : Q→ P . Let {Jn : n ∈ N} be such that for
all J ∈ I(P ) there exists n with J = Jn. For every n let In = f−1(Jn),
which exists in RCA0. Then, by Lemma 5.8, for all I ∈ I(Q) there exists
n with I = In, showing that Q has countably many initial intervals. �

We can now prove in WKL0 the part of the right to left direction of
Theorem 1.5 we are interested in.

Theorem 5.10 (WKL0). Every partial order with countably many ini-
tial intervals has no infinite antichains.

Proof. Immediate from Lemma 5.3 and Corollary 5.9. �

5.3. Unprovability in RCA0. In this subsection we show that RCA0

does not suffice to prove the statements shown in Theorems 5.6 and
5.10 to be provable in WKL0.

A single construction actually works for both statements.

Lemma 5.11. There exists a computable partial order P with an infi-
nite computable antichain such that any computable initial interval of
P is the downward closure of a finite subset of P .

Before proving Lemma 5.11 we show how to deduce from it the un-
provability results.

Theorem 5.12. RCA0 does not prove that every partial order such
that all its initial intervals are finite union of ideals has no infinite
antichains.

Proof. It suffices to show that the statement fails in REC, the ω-model
of computable sets. Let P the computable partial order of Lemma 5.11
and let I be a computable initial interval of P . Let F be a finite set
such that I = ↓F . Then I =

⋃
x∈F P�x and each P�x is a computable

ideal.
Thus all initial intervals of P which belong to REC are finite union

of ideals also belonging to REC. On the other hand, P has an infinite
antichain in REC, showing the failure of the statement. �

Theorem 5.13. RCA0 does not prove that every partial order with
countably many initial intervals has no infinite antichains.
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Proof. We again show that the statement fails in REC, and again use
the computable partial order P of Lemma 5.11. Since the downward
closures of finite subsets of P are uniformly computable, there exists
a set {In : n ∈ N} in REC which lists all computable initial inter-
vals of P . Therefore REC satisfies that P has countably many initial
intervals. Since P has an infinite antichain in REC, the statement
fails. �

Proof of Lemma 5.11. We build P by a finite injury priority argument.
We let P = {xn, yn : n ∈ ω} and ensure the existence of an infinite
computable antichain by making the xn’s pairwise incomparable.

We further make sure that, for all e ∈ ω, P meets the requirement:

Re : (∃y)
(
(Φe(y) = 1 =⇒ (∀∞z ∈ P )z � y)∧(Φe(y) = 0 =⇒ (∀∞z ∈ P )y � z)

)
.

Here, as usual, Φe is the function computed by the Turing machine of
index e and ∀∞ means ‘for all but finitely many’.

We first show that meeting all the requirements implies that P sat-
isfies the statement of the Lemma. If I is a computable initial interval
of P with characteristic function Φe, fix y given by Re. We must have
Φe(y) ∈ {0, 1}. If Φe(y) = 0 then, by Re, (∀∞z ∈ P )y � z. As y /∈ I,
this implies that I is finite and hence I = ↓ I is the downward closure
of a finite set. If Φe(y) = 1, then by Re we have (∀∞z ∈ P )z � y. Thus
P \ P�y and hence I \ P�y are finite. As y ∈ I, I = ↓ ({y} ∪ (I \ P�y))
is the downward closure of a finite set.

Our strategy for meeting a single requirement Re consists in fixing a
witness yn and waiting for a stage s+ 1 such that

Φe,s(yn) ∈ {0, 1}.
If this never happens, Re is satisfied. If Φe,s(yn) = 0, we put every xm
and ym with m > s above yn. If Φe,s(yn) = 1, we put every xm and ym
with m > s below yn. In this way Re is obviously satisfied.

To meet all the requirements, the priority order is R0, R1, R2, . . .. At
every stage s, we define a witness for Re via an index ne,s and mark the
requirements by a {0, 1}-valued function r(e, s) such that r(e, s) = 0 if
and only if Re might require attention at stage s.

Stage s = 0. For all e, ne,0 = e and r(e, 0) = 0.

Stage s + 1. We say that Re requires attention at stage s+1 if e ≤ s,
ne,s ≤ s, r(e, s) = 0 and Φe,s(yne,s) ∈ {0, 1}. If no Re requires attention,
then let ni,s+1 = ni,s and r(i, s + 1) = r(i, s) for all i. Otherwise, let e
be least such that Re requires attention. Then Re receives attention at
stage s + 1 and n = ne,s is activated and declared low if Φe,s(yn) = 0,
high if Φe,s(yn) = 1. Let ne,s+1 = ne,s and r(e, s + 1) = 1. For i < e,
ni,s+1 = ni,s and r(i, s + 1) = r(i, s). For i > e, ni,s+1 = s + i − e and
r(i, s+ 1) = 0.

The following two properties are easily seen to hold:
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(1) every n is activated at most once;
(2) if n is activated at stage s, then no m such that n < m < s is

activated after s.

We define � by stipulating that for all n < m:

(i) xn is incomparable with each of yn, xm and ym;
(ii) yn � (�) xm, ym if and only if n is activated at some stage s

such that n < s ≤ m, is declared low (high) and no k < n is
activated at any stage t such that s < t ≤ m.

When (ii) occurs, it follows by (2) that no k < n is activated at any
stage t such that n < t ≤ m.

Claim 1. P is a partial order.

Proof of claim. We use zn to denote one of xn and yn.
To show antisymmetry, suppose for a contradiction that zn � zm and

zm � zn with n < m. By (i) zn must be yn. Since n can be activated
only once, it follows that n is activated at some stage s with n < s ≤ m
and, by (ii), is declared both low and high, a contradiction.

To check transitivity, let zn ≺ zm ≺ zp. Notice that n, m and p are
all distinct. We consider the following cases:

(a) n < m, p. Then zn = yn and n is activated and declared low at
some stage s such that n < s ≤ m. It is easy to verify that no
k < n is activated at any stage t such that n < t ≤ p, and thus
yn � zp.

(b) m < n, p. Then zm = ym and m is declared both high and low,
contradiction.

(c) p < n,m. Then zp = yp and p is activated and declared high at
some stage s such that p < s ≤ m. As in case (a), it is easy to
check that no k < p is activated at any stage t such that p < t ≤ n,
and so zn � yp. �

Claim 2. Every Re receives attention at most finitely often and is
satisfied.

Proof of claim. As usual, the proof is by induction on e. Let s be the
least such that no Ri with i < e receives attention after s. Let n = ne,s.
Then n = ne,t for all t ≥ s, because a witness for a requirement changes
only when a stronger priority requirement receives attention. Similarly,
r(e, t) = 0 for all t ≥ s such that Re has not received attention at
any stage between s and t. If Φe(yn) /∈ {0, 1}, Re is clearly satisfied.
Suppose that Φe(yn) = 0 (case 1 is similar) and let t be minimal such
that t ≥ max{s, e, n} and Φe,t(yn) = 0. Then Re receives attention
at stage t + 1, n is activated and declared low and no m < n will be
activated after stage t + 1 (because ni,u > n for all i > e and u > t).
Then yn � xm, ym for all m > t and so Re is satisfied. �

Claim 2 completes the proof of the Lemma. �
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6. Open problems

The results of Sections 5.2 and 5.3 leave open the status of the right
to left directions of Theorems 1.1 and 1.5. Each of the statements
(1) “every partial order with an infinite antichain contains an initial
interval which is not a finite union of ideals” and (2) “every partial order
with an infinite antichain has uncountably many initial intervals” can
be either equivalent to WKL0 or of strength strictly between RCA0 and
WKL0.

The latter case would be quite interesting, since the only mathemat-
ical statements with this intermediate strength are those from measure
theory that are equivalent to the system WWKL0. Bienvenu, Patey,
and Shafer improved Theorems 5.12 and 5.13 by showing that WWKL0
does not imply neither (1) nor (2). These results are obtained by mod-
ifying the proof of Lemma 5.11. The draft [BPS] includes also other
non-implications involving statements (1) (called NCF there) and (2).

On the other hand, Gregory Igusa (in private communications) claims
that there cannot be a uniform proof of WKL0 from (1). This claim
does not rule out the possibility that (1) implies WKL0: e.g. there
might exist a proof using twice the statement, the second time using
it on a partial order built from the initial interval obtained by the first
application.

References

[Bon75] Robert Bonnet. On the cardinality of the set of initial intervals of a par-
tially ordered set. In Infinite and finite sets (Colloq., Keszthely, 1973;
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